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Abstract

A micro±macromechanical procedure is developed to establish the response of multiphase composites whose
constituents behave, in general, as hygrothermoelastic materials. The response of the single phase is governed by the
fully coupled theory of heat, moisture and deformation, and the micromechanical theory provides the

hygrothermoelastic behavior of the composite. Results are presented to illustrate the e�ects of coupling between
temperature, moisture and stress, and the interaction between the phases on the overall temporal and spatial
response of a composite slab. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Polymer matrix composites are susceptible to temperature and moisture changes. Thus, due to the

environmental e�ects, the moisture content and the temperature of the composite change with position

and time. Consequently, extensive investigations have been performed to study the hygrothermal e�ects

on this type of composite, see the three volumes of collected works edited by Springer (1981, 1984,

1988), and the recent review article (that contains about 200 references) by Weitsman (1995) for

example. Most of these investigations consider the di�usion process to be controlled by the classical

Fick's law which ignores the coupling between the temperature, mass di�usion and mechanical

deformation. Indeed observed deviations from the Fickian behavior is attributed to several factors, one

of which is the omission of coupling (Sih et al., 1986).
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Sih et al. (1986) and Weitsman (1987) derived from the principles of continuum mechanics and
irreversible thermodynamics, the governing coupled equations of hygrothermoelastic monolithic
isotropic materials. In the special case when the in¯uence of moisture is neglected, these equations
provide the standard coupled thermoelastic equations. As is shown by these authors, the mechanical
deformation can have signi®cant e�ects on the temperature and moisture concentration ®elds.

In composite materials the e�ect of mechanical deformation upon the di�usion and temperature
would be complicated by the heterogeneity and anisotropy of the system. Although such a coupled
theory can be derived for anisotropic hygrothermoelastic materials, the number of parameters involved
would be exceedingly large and their determination might be formidable. This can be achieved, however,
by employing a micromechanical approach which provides the overall hygrothermoelastic behavior of
the composite from that of the individual phases.

In the present paper, the fully coupled hygrothermoelastic equations of monolithic materials are
employed in order to micromechanically establish the global behavior of multiphase composites. Thus, it
is assumed, in general, that each phase is governed by the coupled theory of heat, moisture and
deformation, and the overall behavior of the composite is sought. In the special case in which the
di�usion equation is decoupled from the governing equations, the Fickian di�usion behavior is readily
obtained.

The present derivation is based on a micro±macromechanical theory, that was previously established
for the analysis of functionally graded materials (Aboudi et al., 1994). The accuracy of this theory was
veri®ed by Pindera and Dunn (1997) and Goldberg and Hopkins (1995) by comparison of the predicted
results with ®nite element and boundary element methods, respectively. This theory is extended here and
generalized to accommodate the coupled e�ects of temperature, moisture and mechanical deformation,
and the interactions between the constituents, in order to predict the response of hygrothermoelastic
multiphase composites. The micro±macromechanical theory is based on the satisfaction of the coupled
hygrothermoelastic equations in the individual phases, and the interfacial continuity conditions on the
tractions, displacements, heat and moisture ¯uxes, temperature, chemical potential, and the applied
boundary conditions, all of which are satis®ed in the average sense.

Results are presented for a homogeneous slab whose boundaries are subjected to a sudden application
of temperature or moisture. The obtained response illustrates the e�ect of coupling and the type of
boundary conditions on the resulting ®eld. Results are further generated for a slab ®lled with a porous
material and with a slab that consists of a particulate composite. In both cases the computed average
hygrothermoelastic ®eld illustrates the e�ect of coupling and type of boundary conditions on the
structural response. It is also shown that the heat transfer and di�usion process can be signi®cantly
accelerated or decelerated by controlling the composite applied stresses.

2. Constitutive behavior of the monolithic hygrothermoelastic material

We consider in this paper composite materials in which the phases are hygrothermoelastic. Thus, the
material behavior of every constituent is governed by the coupled theory of heat, moisture and
mechanical deformation. The coupled constitutive equations, based on the principles of continuum
mechanics and irreversible thermodynamics, were established by Sih et al. (1986) and Weitsman (1987).
Here we follow the presentation of Sih et al. (1986) due to the availability of the material parameters
that are involved in this formulation.

For an isotropic material with in®nitesimal strains the hygrothermoelastic constitutive law is given by

sij � lEkkdij � 2mij ÿ �3l� 2m��a�Tÿ T0� � Z�Cÿ C0��dij �1�
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where sij and Eij are the stress and strain tensor components, T and C are the temperature and moisture
concentration, l and m are the LameÂ constants of the material, a and Z are the linear thermal expansion
and linear moisture expansion coe�cients. In Eq. (1), dij is the Kronecker delta, and T0, C0 are the
initial state of the temperature and moisture concentration. It should be noted that in this paper
summation is implied on repeated Latin indices, but no summation is implied on repeated Greek letters.

In the absence of body forces, the mechanical equilibrium equations are given by

sij, j � 0 �2�
The heat and moisture ¯ux vectors are given, respectively, by (Sih et al., 1986)

q � ÿ
�
L21dt � L22

T0

�
rTÿ L21dcrC� L21Zrskk �3�

f � ÿ
�
L11dt � L12

T0

�
rTÿ L11dcrC� L11Zrskk �4�

where Lij, dc, dt are material parameters (L12=L21).
The coupled heat conduction equation that results from the conservation of energy has the following

form

rcp
@T

@ t
ÿ T0dt

@C

@ t
� T0a

@skk
@ t
� ÿqi, i �5�

where r is the material density, cp is the speci®c heat capacity for constant moisture concentration and
pressure, and t is the time.

The coupled di�usion equation which expresses the law of mass conservation is given by

@C

@ t
� ÿfi, i �6�

The combined relations (1)±(6) form the coupled equations that govern the behavior of the monolithic
hygrothermoelastic material.

3. Model geometry

Fig. 1(a) describes a model for a multiphase composite material that consists of various regions in the
form of inclusions embedded in a matrix. By adjusting the geometrical dimensions of the inclusions,
continuous ®bers that extend along the x2 and x3 can also be obtained from this model. The geometric
model of this heterogeneous system is taken to have a ®nite thickness H, and extends to in®nity in the
x2±x3 plane. The composite is assumed to possess a periodic structure in the x2- and x3-directions. In
the direction of the x1-axis on the other hand, the microstructure spacing between adjacent arrays may
vary. This heterogeneous composite is constructed by using the building block or generic unit cell shown
in Fig. 1(b). This generic cell consists of eight subcells designated by the triplet (a, b, g ). Each index
takes on the values 1 or 2 which indicate the relative position of the given subcell along the x1-, x2- and
x3-axes, respectively. The dimensions of the generic cell along the x2- and x3-axes, h1, h2, and l1, l2, are
®xed for the given con®guration since these are the periodic direction. On the other hand, the
dimensions along the x1-axis d ( p )

1 , d ( p )
2 , can vary from one generic cell to another. The dimensions of

the subcells within a given cell along the x1-direction are assigned with a running index p which
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identi®es the cell number. We note that p remains constant in the x2±x3 plane. For the other two
directions, x2 and x3, the corresponding indices q and r are introduced. Thus, a given generic cell is
designed by the triplet ( p, q, r ) for p= 1, 2, . . . , M, where M denotes the total number of generic cells
in the thickness direction x1, and an in®nite range of q and r due to the periodicity of the composite in
the x2- and x3-directions. This implies that

H �
XM
p�1
�d � p�1 � d

� p�
2 �

For p=2, . . . , Mÿ 1 the cells are internal, whereas for p=1 and p=M they are boundary cells.

Fig. 1. (a) A model for multiphase composites that consists of a matrix and embedded inclusions. (b) The generic cell (building

block) that consists of eight subcells.
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It should be emphasized that the generic cell in the present framework is not taken to be a
representative volume element whose e�ective properties can be obtained through homogenization.
Thus, the response of each generic cell is explicitly coupled to the response of the entire column of cells
that extends in the x1-direction. The average behavior of the multiphase composite is determined by
averaging the speci®c desired ®eld quantity (e.g. the stress in 1-direction) over all general cells ( p =
1, . . . ,M ). Thus, the present model allows a coupling between the micro and macro e�ects which is in
stark contrast with the standard uncoupled RVE-based micromechanics approach.

4. Formulation

The derived micro±macromechanical model is based on the satisfaction of the governing equations
(1)±(6) in each subcell, the ful®llment of the various interfacial conditions that are described below, and
the satisfaction of the appropriate boundary conditions. To this end, let us introduce a system of local
coordinates (x- (a ), x- (b ), x- (g )) centered at the subcell's mid-point, see Fig. 1(b).

4.1. Traction continuity conditions

The continuity of tractions separating adjacent subcells within the generic cell ( p, q, r ) is ful®lled by
requiring

s�1bg�1i j� p, q, r�
�x
�1�
1
�d � p�

1
=2
� s�2bg�1i j� p, q, r�

�x
�2�
1
�ÿd � p�

2
=2

�7a�

s�a1g�2i j� p, q, r�
�x�1�
2
�h1=2
� s�a2s�2i j� p, q, r�

�x�2�
2
�ÿh2=2

�7b�

s�ab1�3i j� p, q, r�
�x�1�
3
�l1=2
� s�ab2�3i j� p, q, r�

�x�2�
3
�ÿl2=2

�7c�

In addition to the above continuity conditions within the pth generic cell, the traction continuity at the
interfaces between neighboring cells are ful®lled by satisfying

s�1bg�1i j� p�1, q, r�
�x�1�
1
�ÿd � p�1�

1
=2
� s�2bg�1i j� p, q, r�

�x�2�
1
�d � p�

2
=2

�8a�

s�a1g�2i j� p, q�1, r�
�x�1�
2
�ÿh1=2

� s�a2g�2i j� p, q, r��x�2�
2
�h2=2

�8b�

s�ab1�3i j� p, q, r�1�
�x
�1�
3
�ÿl1=2

� s�ab2�3i j� p, q, r�
�x
�2�
3
�l2=2

�8c�

4.2. Displacement continuity conditions

Just like the traction continuity conditions stated above, the following displacement continuity
conditions must be satis®ed at the interfaces within a generic cell ( p, q, r ) and its neighboring cells

u�1bg� j� p, q, r�
�x�1�
1
�d � p�

1
=2
� u�2bg� j� p, q, r�

�x�2�
1
�ÿd � p�

2
=2

�9a�
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u�a1g� j� p, q, r�
�x
�1�
2
�h1=2
� u�a2g� j� p, q, r�

�x
�2�
2
�ÿh2=2

�9b�

u�ab1� j� p, q, r�
�x
�1�
3
�l1=2
� u�ab2� j� p, q, r�

�x
�2�
3
�ÿl2=2

�9c�

where u(ab1)=(u (abg )
1 , u (abg )

2 , u (abg )
3 ) denotes the displacement vector in subcell (abg ), and

u�1bg� j� p�1, q, r�
�x
�1�
1
�ÿd � p�1�

1
=2
� u�2bg� j� p, q, r�

�x
�2�
1
�d � p�

2
=2

�10a�

u�a1g� j� p, q�1, r�
�x
�1�
2
�ÿh1=2

� u�a2g� j� p, q, r�
�x
�2�
2
�h2=2

�10b�

u�ab1� j� p, q, r�1�
�x
�1�
3
�ÿl1=2

� u�ab2� j� p, q, r�
�x
�2�
3
�l2=2

�10c�

4.3. Heat ¯ux continuity conditions

The continuity of the heat ¯ux at the interfaces of a generic cell, and between neighboring cells are
satis®ed by

q
�1bg�
1 j� p, q, r�

�x
�1�
1
�d � p�

1
=2
� q

�2bg�
1 j� p, q, r�

�x
�2�
1
�ÿd � p�

2
=2

�11a�

q
�a1g�
2 j� p, q, r�

�x
�1�
2
�h1=2
� q

�a2g�
2 j� p, q, r�

�x
�2�
2
�ÿh2=2

�11b�

q
�ab1�
3 j� p, q, r�

�x
�1�
3
�l1=2
� q

�ab2�
3 j� p, q, r�

�x
�2�
3
�ÿl2=2

�11c�

and

q
�1bg�
1 j� p�1, q, r�

�x
�1�
1
�ÿd � p�1�

1
=2
� q

�2bg�
1 j� p, q, r�

�x
�2�
1
�d � p�

2
=2

�12a�

q
�a1g�
2 j� p, q�1, r�

�x�1�
2
�ÿh1=2

� q
�a2g�
2 j� p, q, r�

�x�2�
2
�h2=2

�12b�

q
�ab1�
3 j� p, q, r�1�

�x�1�
3
�ÿl1=2

� q
�ab2�
3 j� p, q, r�

�x�2�
3
�l2=2

�12c�

4.4. Temperature continuity conditions

The continuity of the temperature at the interfaces of a generic cell, and between neighboring cells are
satis®ed by

T �1bg� j� p, q, r�
�x�1�
1
�d � p�

1
=2
� T �2bg� j� p, q, r�

�x�2�
1
�ÿd � p�

2
=2

�13a�
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T �a1g� j� p, q, r�
�x
�1�
2
�h1=2
� T �a2g� j� p, q, r�

�x
�2�
2
�ÿh2=2

�13b�

T �ab1� j� p, q, r�
�x
�1�
3
�l1=2
� T �ab2� j� p, q, r�

�x
�2�
3
�ÿl2=2

�13c�

and

T �1bg� j� p�1, q, r�
�x
�1�
1
�ÿd � p�1�

1
=2
� T �2bg� j� p, q, r�

�x
�2�
1
�d � p�

2
=2

�14a�

T �a1g� j� p, q�1, r�
�x
�1�
2
�ÿh1=2

� T �a2g� j� p, q, r�
�x
�2�
2
�h2=2

�14b�

T �ab1� j� p, q, r�1�
�x
�1�
3
�ÿl1=2

� T �ab2� j� p, q, r�
�x
�2�
3
�l2=2

�14c�

4.5. Moisture ¯ux continuity conditions

The continuity of the moisture ¯ux at the interfaces of a generic cell, and between neighboring cells
are satis®ed by

f
�1bg�
1 j� p, q, r�

�x
�1�
1
�d � p�

1
=2
� f

�2bg�
1 j� p, q, r�

�x
�2�
1
�ÿd � p�

2
=2

�15a�

f
�a1g�
2 j� p, q, r�

�x
�1�
2
�h1=2
� f

�a2g�
2 j� p, q, r�

�x
�2�
2
�ÿh2=2

�15b�

f
�ab1�
3 j� p, q, r�

�x
�1�
3
�l1=2
� f

�ab2�
3 j� p, q, r�

�x
�2�
3
�ÿl2=2

�15c�

and

f
�1bg�
1 j� p�1, q, r�

�x
�1�
1
�ÿd � p�1�

1
=2
� f

�2bg�
1 j� p, q, r�

�x
�2�
1
�d � p�

2
=2

�16a�

f
�a1g�
2 j� p, q�1, r�

�x
�1�
2
�ÿh1=2

� f
�a2g�
2 j� p, q, r�

�x
�2�
2
�h2=2

�16b�

f
�ab1�
3 j� p, q, r�1�

�x
�1�
3
�ÿl1=2

� f
�ab2�
3 j� p, q, r�

�x
�2�
3
�l2=2

�16c�

4.6. Chemical potential continuity conditions

The chemical potential must be continuous across the various interfaces. This condition provides the
necessary interfacial continuity condition that the moisture concentration must ful®ll. It implies that at a
state of thermodynamic equilibrium the moisture concentrations across an interface are related in the
form

C j1� K�T, sij, C j2� �17�
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where K is a function of the temperature, stresses and moisture concentration. For small amounts of
moisture contents it is possible to rewrite Eq. (17) as a simple linear relationship between the
concentrations across the interface as follows

C j1� K�T, sij �C j2
For an isotropic material the chemical potential varies linearly with skk (Sih et al., 1986; Weitsman,
1987). Hence, this function can be linearly expressed in terms of skk, namely

K ' K1�T � � K2�T �skk �18�
where K1(T ) and K2(T ) are appropriate parameters which are temperature dependent. Consequently, the
interfacial boundary conditions for the moisture concentrations can be written in the form

C �1bg� j� p, q, r�
�x�1�
1
�d � p�

2
=2
� KC �2bg� j� p, q, r�

�x�2�
1
�ÿd � p�

2
=2

�19a�

C �a1g� j� p, q, r�
�x
�1�
2
�h1=2
� KC �a2g� j� p, q, r�

�x
�2�
2
�ÿh2=2

�19b�

C �ab1� j� p, q, r�
�x
�1�
3
�l1=2
� KC �ab2� j� p, q, r�

�x
�2�
3
�ÿl2=2

�19c�

and

C �1bg� j� p�1, q, r�
�x
�1�
1
�ÿd � p�1�

2
=2
� KC �2bg� j� p, q, r�

�x
�2�
1
�d � p�

2
=2

�20a�

C �a1g� j� p, q�1, r�
�x
�1�
2
�ÿh1=2

� KC �a2g� j� p, q, r�
�x
�2�
2
�h2=2

�20b�

C �ab1� j� p, q, r�1�
�x
�1�
3
�ÿl1=2

� KC �ab2� j� p, q, r�
�x
�2�
3
�l2=2

�20c�

where for the simplicity of notation, the same function K has been assumed to control all types of
interfaces.

4.7. Boundary conditions

The ®nal set of conditions that the solution must satisfy are the boundary conditions at the top
(x1=0) and bottom (x1=H ) surfaces, as well as the far ®eld normal stress conditions in the periodic 2-
and 3-directions (Aboudi et al., 1995).

Suppose, for example, that the temperature is speci®ed on both surfaces. It follows that

T �1bg� j�1, q, r�� T
�bg�
top , �x

�1�
1 � ÿd �1�1 =2

T �2bg� j�M, q, r�� T
�bg�
bottom, �x

�2�
1 � d

�M �
2 =2

Other types of thermal boundary conditions can be easily formulated. Similarly, mechanical and
moisture boundary conditions can be imposed in the same manner.

As to the far ®eld boundary conditions, these will be dealt with in the following section.
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5. Analysis

The micro±macromechanical analysis is based on the approximation of the displacement, temperature
and moisture concentration ®elds in each subcell of a generic cell in terms of the corresponding ®eld of
the center of the subcell and a quadratic expansion in the local coordinates (x- (a ), x- (b ), x- (g )). The
coe�cients or microvariables associated with these expansions are determined by the satisfaction of the
governing equations and the interfacial and boundary conditions in an average volumetric sense.

5.1. Mechanical analysis

The displacement components u (abg )
i in the subcell (abg ) of the generic cell ( p, q, r ) is approximated

by a second-order expansion in the local coordinates x- (a )1 , x- (b )
2 and x- (g )3

u
�abg�
1 � w

�abg�
1 � �x

�a�
1 f�abg�1 � 1

2�3 �x
�a�2
1 ÿ 1

4d
� p�2
a �U �abg�1 � 1

2�3 �x
�b�2
2 ÿ 1

4h
2
b�V �abg�1 � 1

2�3 �x
�g�2
3

ÿ 1
4 l

2
g�W �abg�

1 �21�

u
�abg�
2 � w

�abg�
2 �x� � �x

�b�
2 w�abg�2 �22�

u
�abg�
3 � w

�abg�
3 �x� � �x

�g�
3 c�abg�3 �23�

where w (abg )
i , which are the displacements at the center of the subcell, and the microvariables U (abg )

1 ,
V (abg )

1 , W (abg )
1 , f (abg )

1 , w (abg )
2 , c (abg )

3 must be determined from the coupled governing equations (2)±(6)
in the subcells, in conjunction with the interfacial and boundary conditions that were given in Section 4.

It should be noted that Eq. (21) does not contain linear terms in the local coordinates x- (b )
2 and x- (g )3 .

This follows directly from the assumed periodicity in the 2- and 3-directions and the symmetry with
respect to the ®ber±matrix and matrix±matrix cross sections, see Fig. 1(a). The displacement ®eld in the
2- and 3-directions, on the other hand, is approximated using a linear expansion in local coordinates to
re¯ect the symmetry and the periodic character of the composite's microstructure in the x2±x3 plane. In
addition functions of the global coordinates x=(x1, x2, x3) are included to allow for non-zero average
normal strains �E22 and �E33, Aboudi et al. (1995). It has been shown in this paper that the following
relations hold

�E22 � @w�abg�2

@x2

�E33 � @w�abg�3

@x3

where �E22 and �E33 are the far ®eld average normal strains, and they are related to the local strain as
follows

�E22 � 1

V

XM
p�1

X2
a, b, g�1

v
� p�
�abg�w

�abg�
2
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�E33 � 1

V

XM
p�1

X2
a, b, g�1

v
� p�
�abg�c

�abg�
2

where V=H(h1+h2)(l1+l2), and v ( p )(abg )=d ( p )
a hblg being the volume of subcell (a, b, g=1, 2).

In a plane strain loading situation these far ®eld average normal strains �E22 and �E33 vanish. Under
generalized plane strain conditions, on the other hand, these far ®eld normal strains are not known in
advance. In this situation, however, the average far ®eld normal stresses are zero. The latter are given by

�s22 � 1

V

XM
p�1

X2
a, b, g�1

v
� p�
�abg�S

�abg�
22�0, 0, 0�

�s33 � 1

V

XM
p�1

X2
a, b, g�1

v
� p�
�abg�S

�abg�
33�0, 0, 0�

where S (abg )
22(0,0,0) and S (abg )

33(0,0,0) denote the average normal stresses in the subcell in the 2- and 3-direction,
respectively (their explicit expressions are given in the sequel).

Thus, either

�E22 � �E33 � 0 �24�
or

�s22 � �s33 � 0 �25�
must be satis®ed, depending on whether plane strain or generalized plane strain conditions hold.

5.2. Thermal analysis

Like the displacement ®eld given above, the derivation from T0 of the temperature distribution in the
subcell (abg ) of the generic cell ( p, q, r ) is represented by

T �abg� � T
�abg�
1 � �x

�a�
1 T

�abg�
2 � 1

2�3 �x
�a�2
1 ÿ 1

4d
� p�2
a �T �abg�3 � 1

2�3 �x
�b�2
2 ÿ 1

4h
2
b�T �abg�4 � 1

2�3 �x
�g�2
3

ÿ 1
4 l

2
g�T �abg�5 �26�

where T (abg )
1 , which is the temperature at the center of the subcell (i.e. the average temperature over the

subcell), and T (abg )
i (i= 2, . . . ,5) are unknown coe�cients which are determined from the satisfaction of

the govern equations (2)±(6) in the subcells, and the continuity and boundary conditions of Section 4.

5.3. Di�usion analysis

The deviation from C0 of the moisture concentration distribution in the subcell (abg ) is represented
by

C abg� � C
�abg�
1 � �x

�a�
1 C

�abg�
2 � 1

2 �3 �x
�a�2
1 ÿ 1

4d
� p�2
a �C �abg�3 � 1

2�3 �x
�b�2
2 ÿ 1

4h
2
b�C �abg�4 � 1

2�3 �x
�g�2
3

ÿ 1
4 l

2
g�C �abg�5 �27�
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where C (abg )
1 , which is the moisture concentration at the center of the subcell (i.e. the average moisture

concentration over the subcell), and C (abg )
i (i = 2, . . . ,5) are unknown coe�cients which are determined

from the satisfaction of the coupled equations (2)±(6) in the subcells, together with the continuity and
boundary conditions in Section 4.

6. Volumetric analysis

6.1. Average ®eld variables

The present approximate analysis is based on the satisfaction of the mechanical equilibrium equation
(2), the energy equation (5), the coupled di�usion equation (6), and the continuity and boundary
conditions, speci®ed in Section 4, in an average sense rather than in a pointwise manner.

To this end let us de®ne the following stress quantities

S
�abg�
ij�l, m, n� �

1

v
� p�
�abg�

�d � p�a =2

ÿd � p�a =2

�hb=2
ÿhb=2

�lg=2
ÿlg=2
� �x�a�1 �l� �x�b�2 �m� �x�g�3 �ns�abg�ij d �x

�a�
1 d �x

�b�
2 d �x

�g�
3 �28�

In particular, the zero-order quantities S (abg )
ij(0,0,0) represent the average stresses in the subcell. By using

constitutive relation, Eq. (1), and expansions (21)±(23), (26) and (27), the resulting non-vanishing zero-,
®rst- and second-order stress quantities are given in Appendix A.

Similarly, let us de®ne the heat ¯ux and moisture ¯ux quantities

Q
�abg�
i�l, m, n� �

1

v
� p�
�abg�

�d � p�a =2

ÿd � p�a =2

�hb=2
ÿhb=2

�lg=2
ÿlg=2
� �x�a�1 �l� �x�b�2 �m� �x�g�3 �nq�abg�i d �x

�a�
1 d �x

�b�
2 d �x

�g�
3 �29�

F
�abg�
i�l, m, n� �

1

v
� p�
�abg�

�d � p�a =2

ÿd � p�a =2

�hb=2
ÿhb=2

�lg=2
ÿlg=2
� �x�a�1 �l� �x�b�2 �m� �x�g�3 �nf �abg�i d �x

�a�
1 d �x

�b�
2 d �x

�g�
3 �30�

By using constitutive relations (3) and (4), and the ®eld expansions (21)±(23), (26) and (27), the zero-
and ®rst-order heat and moisture ¯ux quantities can be evaluated. The resulting explicit expressions are
given in Appendix A.

6.2. Volumetric stress equilibrium equations

The volumetric equilibrium equations are based on the satisfaction of the zeroth, ®rst and second
moments of the equilibrium equation (2). To this end, let us multiply Eqs. (2) by � �x�a�1 �l� �x�b�2 �m� �x�g�3 �n,
where l, m, n= 0, 1, or 2 with l+m+n R 2. Integrating the resulting equations by parts, and using the
displacement expansions (21)±(23), we obtain, after some lengthy manipulations, the equations of
equilibrium in the subcell region (abg ) of the generic cell ( p, q, r ) in the form

I
�abg�
11�0, 0, 0� � J

�abg�
21�0, 0, 0� � K

�abg�
31�0, 0, 0� � 0 �31�

I
�abg�
11�1, 0, 0� ÿ S

�abg�
11�0, 0, 0� � 0 �32�
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J
�abg�
22�0, 1, 0� ÿ S

�abg�
22�0, 0, 0� � 0 �33�

K
�abg�
33�0, 0, 1� ÿ S

�abg�
33�0, 0, 0� � 0 �34�

3I
�abg�
11�0, 0, 0� � J

�abg�
21�0, 0, 0� � K

�abg�
31�0, 0, 0� ÿ 24S

�abg�
11�1, 0, 0�=d

� p�2
a � 0 �35�

I
�abg�
11�0, 0, 0� � 3J

�abg�
21�0, 0, 0� � K

�abg�
31�0, 0, 0� ÿ 24S

�abg�
12�0, 1, 0�=h

2
b � 0 �36�

I
�abg�
11�0, 0, 0� � J

�abg�
21�0, 0, 0� � 3K

�abg�
31�0, 0, 0� ÿ 24S

�abg�
13�0, 0, 1�=l

2
g � 0 �37�

where the following interfacial quantities have been de®ned.

I
�abg�
1j�n, 0, 0� �

1

v
� p�
�abg�

�
d � p�a

2

�n�hb=2
ÿhb=2

�lg=2
ÿlg=2

�
s�abg�1j

�
d � p�a

2

�
� �ÿ1�n�1s�abg�1j

�
ÿ d � p�a

2

��
d �x
�b�
2 d �x

�g�
3 �38�

J
�abg�
2j�0, n, 0� �

1

v
� p�
�abg�

�
hb
2

�n�d � p�a =2

ÿd � p�a =2

�lg=2
ÿlg=2

�
s�abg�2j

�
hb
2

�
� �ÿ1�n�1s�abg�2j

�
ÿ hb

2

��
d �x
�a�
1 d �x

�g�
3 �39�

K
�abg�
3j�0, 0, n� �

1

v
� p�
�abg�

�
lg
2

�n�d � p�a =2

ÿd � p�a =2

�hb=2
ÿhb=2

�
s�abg�3j

�
lg
2

�
� �ÿ1�n�1s�abg�3j

�
ÿ lg

2

��
d �x
�a�
1 d �x

�b�
2 �40�

Manipulations of Eqs. (31), and (35)±(37) yield explicit expressions for the interfacial stresses I (abg )11(0,0,0),
J (abg )
21(0,0,0), K

(abg )
31(0,0,0) in terms of the higher-order stresses. These expressions are given in Appendix B.

6.3. Volumetric energy equations

Similarly, the volumetric energy equations are obtained from the pointwise energy equation (5) by the
satisfaction of its zeroth, ®rst and second moments in subcell (abg ) of the generic cell ( p, q, r ). After
some lengthy manipulations this provides

L
�abg�
1�0, 0, 0� � L

�abg�
2�0, 0, 0� � L

�abg�
3�0, 0, 0� � ÿ�rcp

_T1 ÿ T0dt _C1 � T0a _Skk�0, 0, 0���abg� �41�

L
�abg�
1�1, 0, 0� ÿQ

�abg�
1�0, 0, 0� � ÿ

d � p�2a

12
�rcp

_T2 ÿ T0dt _C2��abg� ÿ T0a _S
�abg�
kk�1, 0, 0� �42�

d � p�2a

4

�
L1�0, 0, 0� � 1

3
�L2�0, 0, 0� � L3�0, 0, 0��

��abg�
ÿ2Q�abg�1�1, 0, 0�

� ÿd
� p�2
a

12

�
rcp

�
_T1 � d � p�2a

10
_T3

�
ÿ T0dt

�
_C1 � d � p�2a

10
_C3

���abg�
ÿT0a _S

�abg�
kk�2, 0, 0� �43�
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h2b
4

�
L2�0, 0, 0� � 1

3
�L1�0, 0, 0� � L3�0, 0, 0��

��abg�
ÿ2Q�abg�2�0, 1, 0�

� ÿh2b
12

�
rcp

�
_T1 �

h2b
10

_T4

�
ÿ T0dt

�
_C1 �

h2b
10

_C4

���abg�
ÿT0a _S

�abg�
kk�0, 2, 0� �44�

l2g
4

�
L3�0, 0, 0� � 1

3
�L1�0, 0, 0� � L2�0, 0, 0��

��abg�
ÿ2Q�abg�3�0, 0, 1�

� ÿ l2g
12

�
rcp

�
_T1 �

l2g
10

_T5

�
ÿ T0dt

�
_C1 �

l2g
10

_C5

���abg�
ÿT0a _S

�abg�
kk�0, 0, 2� �45�

In these equations a dot denotes time derivative, and the interfacial heat ¯ux quantities L
�abg�
i�l, m, n� are

de®ned below.

L
�abg�
1�n, 0, 0� �

1

v
� p�
�abg�

�
d � p�a

2

�n�hb=2
ÿhb=2

�lg=2
ÿlg=2

�
q
�abg�
1

�
d � p�a

2

�
� �ÿ1�n�1q�abg�1

�
ÿ d � p�a

2

��
d �x
�b�
2 d �x

�g�
3 �46�

L
�abg�
2�0, n, 0� �

1

v
� p�
�abg�

�
hb
2

�n�d � p�a =2

ÿd � p�a =2

�lg=2
ÿlg=2

�
q
�abg�
2

�
hb
2

�
� �ÿ1�n�1q�abg�2

�
ÿ hb

2

��
d �x�a�1 d �x

�g�
3 �47�

L
�abg�
3�0, 0, n� �

1

v
� p�
�abg�

�
lg
2

�n�d � p�a =2

ÿd � p�a =2

�hb=2
ÿhb=2

�
q
�abg�
3

�
lg
2

�
� �ÿ1�n�1q�abg�3

�
ÿ lg

2

��
d �x
�a�
1 d �x

�b�
2 �48�

Manipulation of the four equations (41), and (43)±(45) yield explicit expressions for the above interfacial
heat ¯ux quantities L (abg )

1(0,0,0), L
(abg )
2(0,0,0), L

(abg )
3(0,0,0) which are given in Appendix B.

6.4. Volumetric di�usion equations

The same operations on the coupled di�usion equation (6) yield ®ve volumetric equations which are
given in the following

M
�abg�
1�0, 0, 0� �M

�abg�
2�0, 0, 0� �M

�abg�
3�0, 0, 0� � ÿ _C

�abg�
1 �49�

M
�abg�
1�1, 0, 0� ÿ F

�abg�
1�0, 0, 0� � ÿ

d � p�2a

12
_C
�abg�
2 �50�

3M
�abg�
1�0, 0, 0� �M

�abg�
2�0, 0, 0� �M

�abg�
3�0, 0, 0� ÿ 24F

�abg�
1�1, 0, 0�=d

� p�2
a � ÿ

�
_C1 � d � p�2a

10
_C3

��abg�
�51�

M
�abg�
1�0, 0, 0� � 3M

�abg�
2�0, 0, 0� �M

�abg�
3�0, 0, 0� ÿ 24F

�abg�
2�0, 1, 0�=h

2
b � ÿ

�
_C1 �

h2b
10

_C4

��abg�
�52�
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M
�abg�
1�0, 0, 0� �M

�abg�
2�0, 0, 0� � 3M

�abg�
3�0, 0, 0� ÿ 24F

�abg�
3�0, 0, 1�=l

2
g � ÿ

�
_C1 �

l2g
10

_C5

�
�abg� �53�

The interfacial moisture ¯ux M
�abg�
i�l, m, n� are de®ned just like the interfacial heat ¯ux quantities in Eqs.

(46)±(48), but with qi replaced by fi. Manipulation of the four relations (49), (51)±(53) yields explicit
expressions for the interfacial moisture ¯uxes M (abg )

1(0,0,0), M
(abg )
2(0,0,0), M

(abg )
3(0,0,0) which are given in Appendix

B.

7. The governing equations

The governing coupled equations of the hygrothermoelastic multiphase composite are based on the
previously derived zeroth, ®rst and second moments of the equilibrium, energy and di�usion equations,
as well as the satisfaction of the host of interfacial continuity and boundary conditions are described in
Section 4.

7.1. The governing mechanical equations

In Aboudi et al. (1994, 1995) the governing uncoupled mechanical equations were established. In the
present coupled case the combined e�ects of temperature and moisture must be included. Following the
same methodology, these equations can be presented in the following form�

d1 _I
�1bg�
11�0, 0, 0� �

d2
2

_I
�2bg�
11�0, 0, 0� ÿ _I

�2bg�
11�1, 0, 0�

�� p, q, r�
�
�
d2
2

_I
�2bg�
11�0, 0, 0� � _I

�2bg�
11�1, 0, 0�

�� pÿ1, q, r�
� 0 �54�

ÿ
�
d2
4

_I
�2bg�
11�0, 0, 0� � _I

�1bg�
11�1, 0, 0� ÿ

1

2
_I
�2bg�
11�1, 0, 0�

�� p, q, r�
�
�
d2
4

_I
�2bg�
11�0, 0, 0� �

1

2
_I
�2bg�
11�1, 0, 0�

�� pÿ1, q, r�
� 0 �55�

h1 _J
�a1g�
21�0, 0, 0� � h2 _J

�a2g�
21�0, 1, 0��� p, q, r� � 0 �56�

� _J�a1g�22�0, 1, 0� ÿ _J
�a2g�
22�0, 1, 0��� p, q, r� � 0 �57�

�l1 _K
�ab1�
31�0, 0, 0� � l2 _K

�ab2�
31�0, 0, 0��� p, q, r� � 0 �58�

� _K�ab1�33�0, 0, 1� ÿ _K
�ab2�
33�0, 0, 1��� p, q, r� � 0 �59�

Furthermore, the continuity conditions of the displacements in the 1-direction at each subcell interface,
Eqs. (9), yield the following conditions for the pth cell�

_w
�1bg�
1 � d1

2
_f
�1bg�
1 � d 2

1

4
_U
�1bg�
1

�� p, q, r�
�
�

_w
�2bg�
1 ÿ d2

2
_f
�2bg�
1 � d 2

2

4
_U
�2bg�
1

�� p, q, r�
�60�

�
_w
�a1g�
1 � h21

4
_V
�a2g�
1

�� p, q, r�
�
�

_w
�a2g�
1 � h22

4
_V
�a2g�
1

�� p, q, r�
�61�
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�
_w
�ab1�
1 � l21

4
_W
�ab1�
1

�� p, q, r�
�
�

_w
�ab2�
1 � l22

4
_W
�ab1�
1

�� p, q, r�
�62�

Continuity of the displacements in the 2- and 3-directions, yield, respectively,

�h1 _w�a1g�2 � h2 _w�a2g�2 �� p, q, r� ÿ �h1 � h2�_�E22 � 0 �63�

�l1 _c
�ab1�
3 � l2 _c

�ab2�
3 �� p, q, r� ÿ �l1 � l2�_�E33 � 0 �64�

The continuity of displacement between neighboring cells in the 1-direction, Eqs. (10), on the other hand
provides�

_w
�1bg�
1 ÿ d1

2
_f
�1bg�
1 � d 2

1

4
_U
�1bg�
1

�� p�1, q, r�
�
�

_w
�2bg�
1 � d2

2
_f
�2bg�
1 � d 2

2

4
_U
�2bg�
1

�� p, q, r�
�65�

These relations ful®ll all the necessary moments of equilibrium, continuity and boundary requirements.
They form together with the rate of Eq. (31) a system of 56 M linear algebraic equations in the time
rate of the microvariables that appear in Eqs. (21)±(23), (26) and (27). An additional two relations result
from (24) or (25), depending on whether plane strain or generalized plane strain conditions hold.

7.2. The governing energy equations

By following the same methodology in establishing the governing equations in the mechanical case, it
can be shown that the satisfaction of the moments of the energy equations together with the associated
interfacial and boundary conditions, yields after some manipulations, the following set of equations�

d1L
�1bg�
1�0, 0, 0� �

d2
2
L
�2bg�
1�0, 0, 0� ÿ L

�2bg�
1�1, 0, 0�

�� p, q, r�
�
�
d2
2
L
�2bg�
1�0, 0, 0� � L

�2bg�
1�1, 0, 0�

�� pÿ1, q, r�
� 0 �66�

ÿ
�
d2
4
L
�2bg�
1�0, 0, 0� � L

�1bg�
1�1, 0, 0� ÿ

1

2
L
�2bg�
1�1, 0, 0�

�� p, q, r�
�
�
d2
4
L
�2bg�
1�0, 0, 0� �

1

2
L
�2bg�
1�1, 0, 0�

�� pÿ1, q, r�
� 0 �67�

�h1L�a1g�2�0, 0, 0� � h2L
�a2g�
2�0, 0, 0��� p, q, r� � 0 �68�

�l1L�ab1�3�0, 0, 0� � l2L
�ab2�
3�0, 0, 0��� p, q, r� � 0 �69�

Furthermore, the continuity conditions of the temperature at each subcell interface, Eqs. (13), yield the
following conditions for the pth cell�

_T
�1bg�
1 � d1

2
_T
�1bg�
2 � d 2

1

4
_T
�1bg�
3

�� p, q, r�
�
�

_T
�2bg�
1 ÿ d2

2
_T
�2bg�
2 � d 2

2

4
_T
�2bg�
3

�� p, q, r�
�70�

�
_T
�a1g�
1 � h21

4
_T
�a2g�
4

�� p, q, r�
�
�

_T
�a2g�
1 � h22

4
_T
�a2g�
4

�� p, q, r�
�71�
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�
_T
�ab1�
1 � l21

4
_T
�ab1�
5

�� p, q, r�
�
�

_T
�ab2�
1 � l22

4
_T
�ab1�
5

�� p, q, r�
�72�

The continuity of temperature between neighboring cells in the 1-direction, Eqs. (14) on the other hand,
provides�

_T
�1bg�
1 ÿ d1

2
_T
�1bg�
2 � d 2

1

4
_T
�1bg�
3

�� p�1, q, r�
�
�

_T
�2bg�
1 � d2

2
_T
�2bg�
2 � d 2

2

4
_T
�2bg�
3

�� p, q, r�
�73�

Relations (66)±(73) together with (41) provide a system of 40 M linear algebraic equations in the rates
of the microvariables that appear in Eqs. (21)±(23), (26) and (27).

7.3. The governing coupled di�usion equations

The governing equations that represent the di�usion equations are derived in a similar form as the
energy equations. Thus, in Eqs. (66)±(69) we replace everywhere L

�abg�
i�l, m, n� by M

�abg�
i�l, m, n�, and in Eqs. (70)±

(73) we replace T (abg )
i by C (abg )

i . Here too we obtain together with Eq. (49) another linear system of
40 M relations in the time rate of microvariables that appear in Eqs. (21)±(23), (26) and (27).

7.4. Summary of the governing equations

In summary, altogether we have a linear system of 136 M + 2 algebraic equations which govern the
rates of the mechanical, temperature and moisture concentration microvariables in subcell (abg ) that
appear in expansions (21)±(25), (26), (27) and the two far ®eld strain rates _�E22, _�E33: It should be noted
that these equations hold for an arbitrary pth cell in the interior of the composite (i.e. p=2, . . . ,Mÿ 1).
For the boundary cells (i.e. p = 1 and M ), most of these relations also hold, with the exception of the
interfacial continuity conditions between adjacent cells [e.g. Eqs. (54) and (65)] which must be replaced
by the speci®ed boundary conditions.

For a composite that consists of M generic cells, the ®nal system of 136 M + 2 equations can be
symbolically represented below

A ÇU � G �74�
where the structural sti�ness matrix A contains information on the geometry and the hygrothermoelastic
properties of the materials that ®ll the individual subcells in the M cells of the multiphase composite.
The vector U

.
contains the 136 M+2 unknown microvariable rates in each subcell, and _�E22, _�E33, i.e.,

ÇU � � ÇU�111�1 , . . . , ÇU
�222�
M , _�E22, _�E33� �75�

where ÇU
�abg�
p =( _w1, _f1, _U1, _V1, _W1, _w2, _c3, _T1, _T2, _T3, _T4, _T5, _C1, _C2, _C3, _C4, _C5)

(abg )
p . The force vector

G contains information on the applied mechanical, thermal and moisture boundary conditions, and also
involves the microvariables at the current time t. The solution that establishes the response of the
composite is obtained incrementally in time as follows. The system (74) is solved for the rates of the
microvariables and far ®eld normal strains at a given time t, wherein G is evaluated by employing the
values of the microvariables that have been already established in the previous time step. From these
time rates on can obtain the microvariables themselves and the far ®eld normal strains by a simple
Eulerian integration. Once these microvariables have been determined at a given time, we can proceed
and compute the hygrothermoelastic ®eld at any point of the multiphase composite at this time. This
procedure is continued to the next time step.
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8. Applications

In this section results are given that show the e�ect of coupling between temperature, moisture and
deformation. Sih et al. (1986) provide material parameters for a quasi-isotropic graphite/epoxy (T300/
5208) laminate that is subjected to a sudden moisture rise such that the relative humidity changes from 0
to 75% at temperature T0=294 K. The resulting constants established under such circumstances are
given in Table 1.

Another set of material parameters were established by Sih et al. (1986) where the quasi-isotropic
laminate is subjected to a temperature change from 21 to 618C at 75% relative humidity. These
parameters are given in Table 2. It should be noted that all results that have been generated in this
paper at various times t are scaled and shown with respect to the non-dimensional time t=50tK1/H

2rcp,
where K1 has been de®ned in Appendix A. This implies that di�erent time scales are referred to,
depending on whether the material constants in Tables 1 or 2 are used.

8.1. Homogeneous slab

Let us start by exhibiting the response of a homogeneous slab which is initially at temperature
T0=218C and moisture concentration of 75%. Its rigidly clamped boundaries x1=0 and x1=H are
subjected to a sudden temperature change from 21 to 618C at 75% relative humidity. Under such
circumstances the analysis should be based on the data given by Table 2. In Fig. 2 the resulting
temperature variations across the slab, due to the applied temperature change of DTB=408C at the
boundaries x1=0, H, together with the induced moisture concentration are shown at di�erent non-
dimensional times t. This ®gure clearly exhibits the strong coupling that exists between the ®elds.

In Fig. 3 the corresponding average ®eld values are shown against time for plane strain (PS) and
generalized plane strain (GPS) conditions. It is clearly seen that the induced moisture concentrations
and stresses that result from the imposed temperature at the boundaries are signi®cant. Both Figs. 2 and
3 show that steady state is well approached at t=20.

In order to exhibit the strong coupling that exists between temperature, moisture and deformation,
one can consider a hypothetical case in which the e�ect of deformation is neglected. This implies that in
the present case of applied temperature of DTB=408C on the boundaries of the slab, no mechanical
deformation can be induced. This situation is achieved by simply setting that a=Z=0 in the governing

Table 1

Material constants of T300/5208 graphite/epoxy quasi-isotropic laminate subjected to change in moisture from 0 to 75% relative

humidity, at 218C (Sih et al., 1986)

Property Value

E (Young's modulus) 64.3 GPa

n (Poisson's ratio) 0.33

r (mass density) 1590 kg/m3

a (thermal expansion coe�cient) 31.3� 10ÿ6/K
Z (moisture expansion coe�cient) 1.669� 10ÿ4 m3/kg

cp (speci®c heat at constant pressure) 806.461 m2/s2 K

L11 3.544� 10ÿ18 kg s/m3

L12 9.153� 10ÿ12 kg/m s

L22 9.453� 10ÿ5 kg m/s3

dc 1862 m5/kg s2

dt ÿ1373 m2/s2 K
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®eld equations (1)±(6). In Fig. 4 the variation of the temperature and the induced moisture across the
slab are shown at t=1 and 20. By comparing these plots with those shown in Fig. 2 it can be
immediately concluded that the e�ect of coupling is tremendous in the present case of clamped slab
surfaces. It also shows that the mechanical deformation strongly accelerates the heat transfer and
moisture di�usion within the slab.

It is also possible to generate the hygrothermomechanical ®eld when the boundaries of the slab are
kept traction-free while imposing the same thermal boundary conditions on both surfaces, namely the
sudden application of DTB=408C. The resulting induced stresses in this case are far lower (e.g. �s11 �
ÿ20 MPa� than those shown in Fig. 3. As a result, the hygrothermal response under this type of
mechanical boundary conditions turns out to be very close to that given in the extreme case of the
uncoupled mechanical deformation shown in Fig. 4 where all stresses vanish. This implies that one can

Table 2

Material constants of T300/5208 graphite/epoxy quasi-isotropic laminate subjected to a temperature change from 21 to 618C at

75% relative humidity (backed out from Sih et al., 1986)

Property Value

E (Young's modulus) 64.3 GPa

n (Poisson's ratio) 0.33

r (mass density) 1590 kg/m3

a (thermal expansion coe�cient) 31.3� 10ÿ6/K
Z (moisture expansion coe�cient) 1.669� 10ÿ4 m3/kg

cp (speci®c heat at constant pressure) 806.461 m2/s2 K

L11 0.8� 10ÿ11 kg s/m3

L12 0.236� 10ÿ4 kg/m s

L22 281 kg m/s3

dc 0.4� 104 m5/kg s2

dt ÿ0.118� 104 m2/s2 K

Fig. 2. Temperature and moisture variations across a homogeneous slab whose rigidly clamped boundaries are subjected to a sud-

den change of temperature under plane strain conditions.
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signi®cantly accelerate or decelerate the heat transfer and di�usion process in the slab by controlling the
values and signs of the applied mechanical loadings at the boundaries, and the far ®eld normal loads.

As in Figs. 2 and 3, similar results can be generated for a homogeneous slab whose material
properties are given by Table 1. The slab is initially at temperature T0=218C and zero moisture
concentration. Its rigidly clamped boundaries are kept at constant temperature T0=218C, while the
relative humidity at the surfaces x1=0, x1=H is changed suddenly from 0 to 75%. The moisture
concentration C can be related to the relative humidity by utilizing the relation: C=rM1, where M1
denotes the relative moisture content at equilibrium (i.e. the weight of the absorbed liquid at su�ciently
long time divided by the weight of the dry material). For T300/5208, M1=1.1% when the relative
humidity is 75% (Sih et al., 1986). This implies that the corresponding applied moisture concentration
change at the boundaries of the slab x1=0, H is DCB=18.48 kg/m3.

In Fig. 5, the resulting variation across the slab of the moisture concentration and the induced
temperature are shown. The e�ect of the applied moisture on the induced temperature response is
clearly exhibited. In Fig. 6 the resulting average ®eld values in the slab as a function of time are shown

Fig. 3. Time variation of the average temperature, moisture concentration and normal stress of a homogeneous slab subjected to a

sudden temperature change at its rigidly clamped boundaries.
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for plane strain and generalized plane strain conditions. Here too, the strong coupling e�ects between

the ®elds are clearly displayed. It should be noted that owing to the di�erent time measures associated

with Tables 1 and 2, a comparison of Fig. 6 with 3 reveals that the time required for the moisture to
approach the steady state is far longer than that required for the heat ¯ow. This is due to the fact that

the thermal di�usivity is several orders-of-magnitude greater than the moisture di�usion, as it can be

veri®ed from both Tables 1 and 2.

Fig. 4. Temperature and moisture variations across a homogeneous slab whose boundaries are subjected to a sudden change of

temperature. The mechanical deformation has been decoupled from the temperature and moisture ®eld.

Fig. 5. Temperature and moisture variations across a homogeneous slab whose rigidly clamped boundaries are subjected to a sud-

den moisture concentration change under plane strain conditions.
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Fig. 7 presents the hypothetical situation when the mechanical deformation is decoupled from the
temperature and moisture ®eld (obtained by setting a=Z=0). This ®gure shows the distribution across
the thickness of the slab of the moisture concentration and the induced temperature at t=10 and 200. A
comparison with Fig. 5 reveals again the strong e�ect of the coupling with mechanical deformation
which accelerates the di�usion and heat transfer process.

8.2. Porous slab

Consider a slab that is ®lled by the considered graphite/epoxy (T300/5208) matrix whose properties
are described either by Tables 1 or 2. It is assumed that the matrix contains pores with a total porosity
of 10%. This situation can be modeled by selecting empty particles in Fig. 1(a), with a volume ratio of
0.1.

Fig. 8 displays the response of the porous slab that is initially at T = 218C and 75% relative
humidity. Its rigidly clamped boundaries x1=0, H are subjected to a sudden change of temperature
DTB=408C at constant 75% relative humidity. Consequently, the material constants of the

Fig. 6. Time variation of the average temperature, moisture concentration and normal stress of a homogeneous slab subjected to a

sudden moisture concentration change at its rigidly clamped boundaries.
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homogeneous matrix are described by Table 2. The ®gure displays the average resulting change in
temperature, the induced moisture concentration and normal stress under plane strain and generalized
plane strain conditions. Comparison of this ®gure with the corresponding one of the homogeneous
matrix (Fig. 3) shows the strong e�ect of porosity. As it can be seen from Fig. 3, the steady state
situation has been reached at time of about t=10. Fig. 8, on the other hand, indicates that due to the
existence of porosity the steady state has not been reached as yet, and more time is needed to achieve
this situation. In fact due to the existence of the empty pores in the porous slab, its response resembles
that of a traction-free homogeneous slab, or, alternatively, a homogeneous slab with uncoupled
mechanical deformations. As stated earlier, in both cases the induced stresses are rather low, which
result in very slow heat transfer and mass di�usion processes.

The porous material has been modeled by selecting 10 pores that extend uniformly along the thickness
of the slab in the x1-direction, see Fig. 1(a). In Fig. 9 the variation of the induced normal stress s22=s33
across the thickness, caused by the sudden application of temperature change of 408C is shown at time
t=20 for both plane strain and generalized plane strain conditions. The pro®les shown in this ®gure
exhibit abrupt changes while passing from the matrix to the pore regions (where the stresses must
vanish). In the generalized plane strain state these pro®les attain positive and negative values in order to
satisfy the condition that the averages of these normal stresses vanish [see Eq. (25)].

Similar behavior is obtained when a sudden moisture change DCB=18.48 kg/m3 is applied on the
slab's surfaces x1=0, H which are kept rigidly clamped, at a constant temperature T = 218C. Here the
constants given by Table 1 are employed to describe the behavior of the homogeneous graphite/epoxy
matrix. The response of the porous slab (with 10% porosity) is shown in Fig. 10. This ®gure should be
compared to Fig. 6 of the homogeneous material in order to study the e�ect of porosity. Here too
steady state has not yet been reached whereas it has been approached in the corresponding
homogeneous case that is displayed by Fig. 6.

As stated before, Tables 1 and 2 provide the material constants for the sudden application of
moisture concentration and temperature, respectively. However, in the absence of other information
about the appropriate material constants for applied mechanical deformation, let us utilize these tables

Fig. 7. Temperature and moisture variations across a homogeneous slab whose boundaries are subjected to a sudden change of

moisture concentration. The mechanical deformation has been decoupled from the temperature and moisture ®eld.
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to study the response of the slab under hydrostatic mechanical loading. To this end consider a
mechanical loading in which the following isotropic strain deformation: �E11 � �E22 � �E33 � 0:01 has been
suddenly applied, while keeping the slab boundaries at T=T0=218C and C=C0=18.48 kg/m3. The
resulting responses are shown in Figs. 11 and 12 when Tables 1 and 2 are, respectively, employed. These
two ®gures (that involve di�erent time scales) present the induced average temperature and moisture
changes due to the imposed hydrostatic deformation. Thus, these ®gures show the e�ect of coupling that
exists between the mechanical deformation and the hygrothermal ®eld.

8.3. Particulate composite slab

Consider a particulate composite that consists of a T300/5208 graphite/epoxy quasi-isotropic laminate
®lled with Al2O3 ceramic particles. The graphite/epoxy hygrothermoelastic matrix is characterized by
Table 2, while the thermoelastic properties of the particles are given by Johnson et al. (1994) and
presented in Table 3. Suppose that a slab consists of this composite with 10% particles volume ratio.

Fig. 8. Time variation of the average temperature, moisture concentration and normal stress of a porous slab subjected to a sudden

temperature change at its rigidly clamped boundaries.
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The slab is initially at temperature T0=218C and 75% relative humidity. Fig. 13 exhibits the response of

this slab whose rigidly clamped surfaces x1=0, H are subjected to a sudden change of temperature

DTB=408C while the relative humidity is kept at constant. It should be noted that it is assumed

(according to Table 3) that no mass di�usion takes place in the ceramic particles, but contrary to the

extreme case of empty pores they possess thermoelastic properties and conduct heat. Comparison of this

®gure with the corresponding one for the porous slab, Fig. 8, shows the e�ect of the ceramic particles

on the particulate composite response. As it can be expected, higher values of the stresses are induced in

the present case.

As in the case of the porous material, the particulate composite has been modeled by considering 10

particles which are arranged uniformly in the 1-direction, forming a volume ratio of 0.1. In Fig. 14, the

induced normal stresses s22=s33 caused by the above temperature change at the boundaries are shown

across the thickness of the slab under plane strain and generalized plane strain conditions, at time

t=20. This ®gure should be compared with Fig. 9 for the porous case. The non-zero stresses that exist

in the particles should be noticed.

Fig. 9. Normal stress variations across a porous slab whose rigidly clamped boundaries are subjected to a sudden change of tem-

perature at its boundaries.

Table 3

Material constant of Al2O3 alumina (Johnson et al., 1994)

Property Value

E (Young's modulus) 400 GPa

n (Poisson's ratio) 0.24

r (mass density) 3972 kg/m3

a (thermal expansion coe�cient) 16.32� 10ÿ6/K
cv (speci®c heat at constant volume) 783 m2/s2 K

k (thermal conductivity) 30 W/m K

J. Aboudi, T.O. Williams / International Journal of Solids and Structures 37 (2000) 4149±41794172



9. Conclusions

A coupled micro±macromechanical analysis has been developed and implemented to study the
response of multiphase composites whose phases behave as hygrothermoelastic materials. The model has
been applied to a T300/5208 graphite/epoxy quasi-isotropic matrix, since this is the only material whose
material parameters are available. Consequently, it was possible to model a porous material and a
particulate composite (in which the ceramic particles were assumed to behave as thermoelastic material).
The model provides the temporal and spatial response of a composite slab as well as the e�ect of
coupling between the three ®elds, when it is subjected to various types of boundary conditions. The
present model can be utilized, in particular, to study the e�ect of the applied stresses on the heat
transfer and di�usion process in the composite.

Several generalizations can be considered as follows. (1) The parameters that characterize this type of
material are usually moisture and temperature dependent (in particular the moisture di�usivity is
strongly temperature sensitive). This e�ect has not been taken into account due to the unavailability of
such information. (2) In the present model perfect bonding has been assumed. It is well known,

Fig. 10. Time variation of the average temperature, moisture concentration and normal stress of a porous slab subjected to a sud-

den moisture concentration change at its rigidly clamped boundaries.
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however, that interfacial damage takes place with increase of moisture content in composites. Interfacial

damage can be incorporated in the present analysis. (3) Damage also occurs in the form of

microcracking. The present approach can be potentially extended to incorporate these e�ects by utilizing

continuum damage mechanics considerations.

Fig. 11. Time variation of the average temperature and moisture concentration of a porous slab that is subjected to a sudden appli-

cation of a hydrostatic strain: �E11 � �E22 � �E33 � 1%, while keeping its boundaries at T=T0 and zero moisture. The material par-

ameters of the matrix are characterized by Table 1.

Fig. 12. Time variation of the average temperature and moisture concentration of a porous slab that is subjected to a sudden appli-

cation of a hydrostatic strain: �E11 � �E22 � �E33 � 1%, while keeping its boundaries at T=T0 and zero moisture. The material par-

ameters of the matrix are characterized by Table 2.
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Appendix A

The components of the volumetric stress quantities S
�abg�
ij�l; m, n� are given in the following. For

simplicity, the superscripts (abg ) have been omitted.

S11�0, 0, 0� � �l� 2m�f1 � l�w2 � c3� ÿ GT1 ÿ LC1 �A1�

Fig. 13. Time variation of the average temperature, moisture concentration and normal stress of a slab that consists of a particulate

material. The slab is subjected to a sudden temperature change at its rigidly clamped boundaries.
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S22�0, 0, 0� � �l� 2m�w2 � l�f1 � c3� ÿ GT1 ÿ LC1 �A2�

S33�0, 0, 0� � �l� 2m�c2 � l�f1 � w3� ÿ GT1 ÿ LC1 �A3�

S11�1, 0, 0� � d � p�2a

12
�3�l� 2m�U1 ÿ GT2 ÿ LC2� �A4�

Skk�1, 0, 0� � d � p�2a

4
��3l� 2m�U1 ÿ GT2 ÿ LC2� �A5�

Skk�2, 0, 0� � d � p�2a

12

�
�3l� 2m��f1 � w2 � c3� ÿ 3G

�
T1 � d � p�2a

10
T3

�
ÿ 3L

�
C1 � d � p�2a

10
C3

��
�A6�

Skk�0, 2, 0� �
h2b
12

�
�3l� 2m��f1 � w2 � c3� ÿ 3G

�
T1 �

h2b
10

T4

�
ÿ 3L

�
C1 �

h2b
10

C4

��
�A7�

Skk�0, 0, 2� �
l2g
12

�
�3l� 2m��f1 � w2 � c3� ÿ 3G

�
T1 �

l 2g
10

T5

�
ÿ 3L

�
C1 �

l2g
10

C5

��
�A8�

S12�0, 1, 0� �
h2b
4
mV1 �A9�

S13�0, 0, 1� �
l2g
4
mW1 �A10�

where G=(3l+2m )a and L=(3l+2m )Z.

Fig. 14. Normal stress variations across a slab that consists of a particulate material. The slab is subjected to a sudden change of

temperature at its rigidly clamped boundaries.
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The corresponding expressions for the various zero- and ®rst-order heat moisture ¯ux quantities are
as follows

Q1�0, 0, 0� � ÿ�K1T2 � K2C2 ÿ 3K3U1� �A11�

Q1�1, 0, 0� � ÿd
� p�2
a

4
�K1T3 � K2C3� �A12�

Q2�0, 1, 0� � ÿ
h2b
4
�K1T4 � K2C4� �A13�

Q3�0, 0, 1� � ÿ
l2g
4
�K1T5 � K2C5� �A14�

and

F1�0, 0, 0� � ÿ�k1T2 � k2C2 ÿ 3k3U1� �A15�

F1�1, 0, 0� � ÿd
� p�2
a

4
�k1T3 � k2C3� �A16�

F2�0, 1, 0� � ÿ
h2b
4
�k1T4 � k2C4� �A17�

F3�0, 0, 1� � ÿ
l2g
4
�k1T5 � k2C5� �A18�

where

K1 �
�
L21dt � L22

T0
� 3L21ZG

�

K2 � L21�dc � 3ZL�

K3 � ÿL21L

k1 �
�
L11dt � L12

T0
� 3L11ZG

�

k2 � L11�dc � 3ZL�

k3 � ÿL11L

J. Aboudi, T.O. Williams / International Journal of Solids and Structures 37 (2000) 4149±4179 4177



Appendix B

The explicit expressions of the interfacial stress quantities are given below. For simplicity, the
superscripts (abg ) have been omitted in this Appendix

I11�0, 0, 0� � 12

d
� p�2
a

S11�1, 0, 0� �B1�

J21�0, 0, 0� � 12

h2b
S12�0, 1, 0� �B2�

K31�0, 0, 0� � 12

l 2g
S13�0, 0, 1� �B3�

where the values of these higher-order volumetric stresses have been given in Appendix A. It should be
noted the interfacial quantities I11(1,0,0), J22(0,1,0), K33(0,0,1) have already been provided by Eqs. (32)±(34).

The explicit expressions of the interfacial heat ¯ux quantities are given below

L1�0, 0, 0� � d � p�2a

20
�ÿrcp

_T3 � T0dt _C3� � 1

2
T0a

�
_Skk�0, 0, 0� ÿ 12

d
� p�2
a

_Skk�2, 0, 0�
�
� 12

d
� p�2
a

Q1�1, 0, 0� �B4�

L2�0, 0, 0� �
h2b
20
�ÿrcp

_T4 � T0dt _C4� � 1

2
T0a

"
_Skk�0, 0, 0� ÿ 12

h2b

_Skk�0, 2, 0�

#
� 12

h2b
Q2�0, 1, 0� �B5�

L3�0, 0, 0� �
l2g
20
�ÿrcp

_T5 � T0dt _C5� � 1

2
T0a

"
_Skk�0, 0, 0� ÿ 12

l2g
_Skk�0, 0, 2�

#
� 12

l 2g
Q3�0, 0, 1� �B6�

It should be noted the interfacial quantity L1(1,0,0) has already been provided by Eq. (42).
The explicit expressions of the interfacial moisture ¯ux quantities are given below

M1�0, 0, 0� � ÿd
� p�2
a

20
_C3 � 12

d
� p�2
a

F1�1, 0, 0� �B7�

M2�0, 0, 0� � ÿ
h2b
20

_C4 � 12

h2b
F2�0, 1, 0� �B8�

M3�0, 0, 0� � ÿ
l2g
20

_C5 � 12

l2g
F3�0, 0, 1� �B9�

It should be noted the interfacial quantity M1(1,0,0) has already been provided by Eq. (50).
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